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(x, y)-plane containing equal numbers of points seemed to lie approximately on
ellipses. The explanation for this lies in the bivariate normal distribution; see
§1.5 below. What is most relevant here is Galton’s interpretation of the sample
and population regression lines (SRL) and (PRL). In (PRL), σx and σy are
measures of variability in the parental and offspring generations. There is no
reason to think that variability of height is changing (though mean height has
visibly increased from the first author’s generation to his children). So (at least
to a first approximation) we may take these as equal, when (PRL) simplifies to

y − Ey = ρxy(x − Ex). (PRL)

Hence Galton’s celebrated interpretation: for every inch of height above (or
below) the average, the parents transmit to their children on average ρ inches,
where ρ is the population correlation coefficient between parental height and
offspring height. A further generation will introduce a further factor ρ, so the
parents will transmit – again, on average – ρ2 inches to their grandchildren.
This will become ρ3 inches for the great-grandchildren, and so on. Thus for
every inch of height above (or below) the average, the parents transmit to their
descendants after n generations on average ρn inches of height. Now

0 < ρ < 1

(ρ > 0 as the genes for tallness or shortness are transmitted, and parental
and offspring height are positively correlated; ρ < 1 as ρ = 1 would imply
that parental height is completely informative about offspring height, which is
patently not the case). So

ρn → 0 (n → ∞):

the effect of each inch of height above or below the mean is damped out with
succeeding generations, and disappears in the limit. Galton summarised this as
‘Regression towards mediocrity in hereditary stature’, or more briefly, regres-
sion towards the mean (Galton originally used the term reversion instead, and
indeed the term mean reversion still survives). This explains the name of the
whole subject.

Note 1.4

1. We are more interested in intelligence than in height, and are more likely
to take note of the corresponding conclusion for intelligence.

2. Galton found the conclusion above depressing – as may be seen from his
use of the term mediocrity (to call someone average may be factual, to call
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them mediocre is disparaging). Galton had a typically Victorian enthusiasm
for eugenics – the improvement of the race. Indeed, the senior chair in
Statistics in the UK (or the world), at University College London, was
originally called the Galton Chair of Eugenics. This was long before the
term eugenics became discredited as a result of its use by the Nazis.

3. The above assumes random mating. This is a reasonable assumption to
make for height: height is not particularly important, while choice of mate
is very important, and so few people choose their life partner with height
as a prime consideration. Intelligence is quite another matter: intelligence
is important. Furthermore, we can all observe the tendency of intelligent
people to prefer and seek out each others’ company, and as a natural conse-
quence, to mate with them preferentially. This is an example of assortative
mating. It is, of course, the best defence for intelligent people who wish
to transmit their intelligence to posterity against regression to the mean.
What this in fact does is to stratify the population: intelligent assortative
maters are still subject to regression to the mean, but it is to a different
mean – not the general population mean, but the mean among the social
group in question – graduates, the learned professions or whatever.

1.4 Applications of regression

Before turning to the underlying theory, we pause to mention a variety of
contexts in which regression is of great practical use, to illustrate why the
subject is worth study in some detail.

1. Examination scores.

This example may be of particular interest to undergraduates! The context
is that of an elite institution of higher education. The proof of elite status
is an excess of well-qualified applicants. These have to be ranked in merit
order in some way. Procedures differ in detail, but in broad outline all
relevant pieces of information – A Level scores, UCAS forms, performance
in interview, admissions officer’s assessment of potential etc. – are used,
coded in numerical form and then combined according to some formula
to give a numerical score. This is used as the predictor variable x, which
measures the quality of incoming students; candidates are ranked by score,
and places filled on merit, top down, until the quota is reached. At the
end of the course, students graduate, with a classified degree. The task of
the Examiners’ Meeting is to award classes of degree. While at the margin
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this involves detailed discussion of individual cases, it is usual to table
among the papers for the meeting a numerical score for each candidate,
obtained by combining the relevant pieces of information – performance on
the examinations taken throughout the course, assessed course-work etc. –
into a numerical score, again according to some formula. This score is y, the
response variable, which measures the quality of graduating students. The
question is how well the institution picks students – that is, how good a
predictor of eventual performance y the incoming score x is. Of course, the
most important single factor here is the innate ability and personality of the
individual student, plus the quality of their school education. These will be
powerfully influential on both x and y. But they are not directly measurable,
while x is, so x serves here as a proxy for them. These underlying factors
remain unchanged during the student’s study, and are the most important
determinant of y. However, other factors intervene. Some students come to
university if anything under-prepared, grow up and find their feet, and get
steadily better. By contrast, some students arrive if anything over-prepared
(usually as a result of expensively purchased ‘cramming’) and revert to
their natural level of performance, while some others arrive studious and
succumb to the temptations of wine, women (or men) and song, etc. The
upshot is that, while x serves as a good proxy for the ability and intelligence
which really matter, there is a considerable amount of unpredictability, or
noise, here.

The question of how well institutions pick students is of great interest, to
several kinds of people:

a) admissions tutors to elite institutions of higher education,

b) potential students and their parents,

c) the state, which largely finances higher education (note that in the
UK in recent years, a monitoring body, OFFA – the Office for Fair
Access, popularly referred to as Oftoff – has been set up to monitor
such issues).

2. Height.

Although height is of limited importance, proud parents are consumed
with a desire to foresee the future for their offspring. There are various
rules of thumb for predicting the eventual future height as an adult of a
small child (roughly speaking: measure at age two and double – the details
vary according to sex). This is of limited practical importance nowadays,
but we note in passing that some institutions or professions (the Brigade
of Guards etc.) have upper and lower limits on heights of entrants.
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3. Athletic Performance

a) Distance.

Often an athlete competes at two different distances. These may be
half-marathon and marathon (or ten miles and half-marathon) for the
longer distances, ten kilometres and ten miles – or 5k and 10k – for the
middle distances; for track, there are numerous possible pairs: 100m
and 200m, 200m and 400m, 400m and 800m, 800m and 1500m, 1500m
and 5,000m, 5,000m and 10,000m. In each case, what is needed – by the
athlete, coach, commentator or follower of the sport – is an indication of
how informative a time x over one distance is on time y over the other.

b) Age.

An athlete’s career has three broad phases. In the first, one completes
growth and muscle development, and develops cardio-vascular fitness
as the body reacts to the stresses of a training regime of running. In the
second, the plateau stage, one attains one’s best performances. In the
third, the body is past its best, and deteriorates gradually with age.
Within this third phase, age is actually a good predictor: the Rule of
Thumb for ageing marathon runners (such as the first author) is that
every extra year costs about an extra minute on one’s marathon time.

4. House Prices and Earnings.

Under normal market conditions, the most important single predictor vari-
able for house prices is earnings. The second most important predictor
variable is interest rates: earnings affect the purchaser’s ability to raise fi-
nance, by way of mortgage, interest rates affect ability to pay for it by
servicing the mortgage. This example, incidentally, points towards the use
of two predictor variables rather than one, to which we shall return below.
(Under the abnormal market conditions that prevail following the Crash
of 2008, or Credit Crunch, the two most relevant factors are availability
of mortgage finance (which involves liquidity, credit, etc.), and confidence
(which involves economic confidence, job security, unemployment, etc.).)
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1.5 The Bivariate Normal Distribution

Recall two of the key ingredients of statistics:

(a) The normal distribution, N(μ, σ2):

f(x) =
1

σ
√

2π
exp

{

− (x − μ)2

2σ2

}

,

which has mean EX = μ and variance varX = σ2.

(b) Linear regression by the method of least squares – above.

This is for two-dimensional (or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two
questions arise:

(i) Why linear?

(ii) What (if any) is the two-dimensional analogue of the normal law?

Writing

φ(x) :=
1√
2π

exp
{

−1
2
x2

}

for the standard normal density,
∫

for
∫ ∞
−∞, we shall need

(i) recognising normal integrals:

a)
∫

φ(x)dx = 1 (‘normal density’),

b)
∫

xφ(x)dx = 0 (‘normal mean’ - or, ‘symmetry’),

c)
∫

x2φ(x)dx = 1 (‘normal variance’),

(ii) completing the square: as for solving quadratic equations!

In view of the work above, we need an analogue in two dimensions of the
normal distribution N(μ, σ2) in one dimension. Just as in one dimension we
need two parameters, μ and σ, in two dimensions we must expect to need five,
by the above.

Consider the following bivariate density:

f(x, y) = c exp
{

−1
2
Q(x, y)

}

,
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where c is a constant, Q a positive definite quadratic form in x and y. Specifi-

cally:

c =
1

2πσ1σ2

√
1 − ρ2

,

Q =
1

1 − ρ2

[(x − μ1

σ1

)2

− 2ρ
(x − μ1

σ1

)(y − μ2

σ2

)
+

(y − μ2

σ2

)2
]

.

Here σi > 0, μi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability density) function (in two dimensions), it suffices to
show that f integrates to 1:

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1, or

∫ ∫

f = 1.

Write
f1(x) :=

∫ ∞

−∞
f(x, y) dy, f2(y) :=

∫ ∞

−∞
f(x, y) dx.

Then to show
∫ ∫

f = 1, we need to show
∫ ∞
−∞ f1(x) dx = 1 (or

∫ ∞
−∞ f2(y) dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X , Y , then f1(x) is the density fX(x)
of X , f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have the
algebraic identity

(1 − ρ2)Q ≡
[(y − μ2

σ2

)
− ρ

(x − μ1

σ1

)]2

+
(
1 − ρ2

) (x − μ1

σ1

)2

(reducing the number of occurrences of y to 1, as we intend to integrate out y

first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp

(
− 1

2 (x − μ1)2/σ2
1

)

σ1

√
2π

∫ ∞

−∞

1
σ2

√
2π

√
1 − ρ2

exp
(− 1

2 (y − cx)2

σ2
2 (1 − ρ2)

)

dy,

(∗)
where

cx := μ2 + ρ
σ2

σ1
(x − μ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp

(
− 1

2 (x − μ1)2/σ2
1

)

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
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Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional).

So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X, Y are normal: X is N(μ1, σ
2
1), Y is N(μ2, σ

2
2). For, we showed

f1 = fX to be the N(μ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = μ1, EY = μ2, var X = σ2
1 , var Y = σ2

2 .
This identifies four out of the five parameters: two means μi, two

variances σ2
i .

Next, recall the definition of conditional probability:

P (A|B) := P (A ∩ B)/P (B).

In the discrete case, if X, Y take possible values xi, yj with probabilities
fX(xi), fY (yj), (X, Y ) takes possible values (xi, yj) with corresponding proba-
bilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj |xi) =
P (Y = yj , X = xi)

P (X = xi)
=

fX,Y (xi, yj)∑
jfX,Y (xi, yj)

,

and similarly with X, Y interchanged.
In the density case, we have to replace sums by integrals. Thus the condi-

tional density of Y given X = x is (see e.g. Haigh (2002), Def. 4.19, p. 80)

fY |X(y|x) :=
fX,Y (x, y)

fX(x)
=

fX,Y (x, y)
∫ ∞
−∞ fX,Y (x, y) dy

.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is

N

(

μ2 + ρ
σ2

σ1
(x − μ1), σ2

2

(
1 − ρ2

)
)

.

Proof

Go back to completing the square (or, return to (∗) with
∫

and dy deleted):

f(x, y) =
exp

{
− 1

2 (x − μ1)
2
/σ2

1

}

σ1

√
2π

.
exp

{
− 1

2 (y − cx)2 /
(
σ2

2

(
1 − ρ2

))}

σ2

√
2π

√
1 − ρ2

.
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The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the second
factor:

fY |X(y|x) =
1√

2πσ2

√
1 − ρ2

exp
{

−(y − cx)2

2σ2
2(1 − ρ2)

}

,

where cx is the linear function of x given below (∗).

This not only completes the proof of Fact 4 but gives
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = μ2 + ρ
σ2

σ1
(x − μ1).

Note 1.5

1. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = μ2 + ρ(x − μ1)

(recall EX = μ1, EY = μ2). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, x−μ1,
the parents pass on to their child, on average, ρ inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average ρn inches, and ρn → 0 as n → ∞, giving regression
towards the mean.

2. This line is the population regression line (PRL), the population version
of the sample regression line (SRL).

3. The relationship in Fact 5 can be generalised (§4.5): a population regression
function – more briefly, a regression – is a conditional mean.
This also gives

Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2

(
1 − ρ2

)
.

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2 . By

Fact 5, the variability remaining in Y when X is given (i.e., not accounted for
by knowledge of X) is σ2

2(1 − ρ2). Subtracting, the variability of Y which is
accounted for by knowledge of X is σ2

2ρ2. That is, ρ2 is the proportion of the
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variability of Y accounted for by knowledge of X . So ρ is a measure of the
strength of association between Y and X .

Recall that the covariance is defined by

cov(X, Y ) := E[(X − EX)(Y − EY )] = E[(X − μ1)(Y − μ2)],

= E(XY ) − (EX)(EY ),

and the correlation coefficient ρ, or ρ(X, Y ), defined by

ρ = ρ(X, Y ) :=
cov(X, Y )√
varX

√
varY

=
E[(X − μ1)(Y − μ2)]

σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X, Y is a function of the other). That this is consistent
with the use of the symbol ρ for a parameter in the density f(x, y) is shown by
the fact below.
Fact 7. If (X, Y )T is bivariate normal, the correlation coefficient of X, Y is ρ.

Proof

ρ(X, Y ) := E

[(
X − μ1

σ1

) (
Y − μ2

σ2

)]

=
∫ ∫ (x − μ1

σ1

)(y − μ2

σ2

)
f(x, y)dxdy.

Substitute for f(x, y) = c exp(− 1
2Q), and make the change of variables u :=

(x − μ1)/σ1, v := (y − μ2)/σ2:

ρ(X, Y ) =
1

2π
√

1 − ρ2

∫ ∫

uv exp

(
−

[
u2 − 2ρuv + v2

]

2(1 − ρ2)

)

du dv.

Completing the square as before, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫

u exp
(

−u2

2

)

du.
1√

2π
√

1 − ρ2

∫

v exp
(

− (v − ρu)2

2(1 − ρ2)

)

dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the second
is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ

∫

u2 exp
(

−u2

2

)

du = ρ

(‘normal variance’), as required.

This completes the identification of all five parameters in the bivariate nor-
mal distribution: two means μi, two variances σ2

i , one correlation ρ.
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Note 1.6

1. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1, by the Cauchy-
Schwarz inequality (see e.g. Garling (2007) p.15, Haigh (2002) Ex 3.20
p.86, or Howie (2001) p.22 and Exercises 1.1-1.2). In the limiting cases
ρ = ±1, one of X, Y is then a linear function of the other: Y = aX + b, say,
as in the temperature example (Fahrenheit and Centigrade). The situation
is not really two-dimensional: we can (and should) use only one of X and
Y , reducing to a one-dimensional problem.

2. The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ2
1), which

can be written as cov(X, Y )/varX = σ12/σ11, or σ12/σ2
1 : the line is

y − EY =
σ12

σ11
(x − EX).

This is the population version (what else?!) of the sample regression line

y − y =
sXY

sXX
(x − x),

familiar from linear regression.

The case ρ = ±1 – apparently two-dimensional, but really one-dimensional
– is singular; the case −1 < ρ < 1 (genuinely two-dimensional) is non-
singular, or (see below) full rank.

We note in passing
Fact 8. The bivariate normal law has elliptical contours.

For, the contours are Q(x, y) = const, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), §5.2) the
definition of the moment generating function (MGF) of a random variable X .
This is the function

M(t), or MX(t) := E exp{tX}

for t real, and such that the expectation (typically a summation or integration,
which may be infinite) converges (absolutely). For X normal N(μ, σ2),

M(t) =
1

σ
√

2π

∫

etx exp
(

−1
2
(x − μ)2/σ2

)

dx.

Change variable to u := (x − μ)/σ:

M(t) =
1√
2π

∫

exp
(

μt + σut − 1
2
u2

)

du.
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Completing the square,

M(t) = eμt 1√
2π

∫

exp
(

−1
2
(u − σt)2

)

du.e
1
2 σ2t2 ,

or MX(t) = exp(μt + 1
2σ2t2) (recognising that the central term on the right is

1 – ‘normal density’) . So MX−μ(t) = exp(1
2σ2t2). Then (check)

μ = EX = M ′
X(0), var X = E[(X − μ)2] = M ′′

X−μ(0).

Similarly in the bivariate case: the MGF is

MX,Y (t1, t2) := E exp(t1X + t2Y ).

In the bivariate normal case:

M(t1, t2) = E(exp(t1X + t2Y )) =
∫ ∫

exp(t1x + t2y)f(x, y) dx dy

=
∫

exp(t1x)f1(x) dx

∫

exp(t2y)f(y|x) dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ2
2 , (1 − ρ2)), so is

exp(cxt2 + 1
2σ2

2(1 − ρ2)t22). By Fact 5

cxt2 = [μ2 + ρ
σ2

σ1
(x − μ1)]t2,

so M(t1, t2) is equal to

exp
(

t2μ2 − t2
σ2

σ1
μ1 +

1
2
σ2

2

(
1 − ρ2

)
t22

)∫

exp
([

t1 + t2ρ
σ2

σ1

]

x

)

f1(x) dx.

Since f1(x) is N(μ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(μ1[t1 + t2ρ
σ2

σ1
] +

1
2
σ2

1 [. . .]
2).

Combining the two terms and simplifying, we obtain
Fact 9. The joint MGF is

MX,Y (t1, t2) = M(t1, t2) = exp
(

μ1t1 + μ2t2 +
1
2

[
σ2

1t21 + 2ρσ1σ2t1t2 + σ2
2t22

]
)

.

Fact 10. X, Y are independent iff ρ = 0.

Proof

For densities: X, Y are independent iff the joint density fX,Y (x, y) factorises as
the product of the marginal densities fX(x).fY (y) (see e.g. Haigh (2002), Cor.
4.17).

For MGFs: X, Y are independent iff the joint MGF MX,Y (t1, t2) factorises
as the product of the marginal MGFs MX(t1).MY (t2). From Fact 9, this occurs
iff ρ = 0.
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Note 1.7

1. X, Y independent implies X, Y uncorrelated (ρ = 0) in general (when the
correlation exists). The converse is false in general, but true, by Fact 10,
in the bivariate normal case.

2. Characteristic functions (CFs). The characteristic function, or CF, of X is

φX(t) := E(eitX).

Compared to the MGF, this has the drawback of involving complex num-
bers, but the great advantage of always existing for t real. Indeed,

|φX(t)| =
∣
∣E(eitX)

∣
∣≤E

∣
∣
(
eitX

)∣
∣ = E1 = 1.

By contrast, the expectation defining the MGF MX(t) may diverge for
some real t (as we shall see in §2.1 with the chi-square distribution.) For
background on CFs, see e.g. Grimmett and Stirzaker (2001) §5.7. For our
purposes one may pass from MGF to CF by formally replacing t by it

(though one actually needs analytic continuation – see e.g. Copson (1935),
§4.6 – or Cauchy’s Theorem – see e.g. Copson (1935), §6.7, or Howie (2003),
Example 9.19). Thus for the univariate normal distribution N(μ, σ2) the
CF is

φX(t) = exp
{

iμt − 1
2
σ2t2

}

and for the bivariate normal distribution the CF of X, Y is

φX,Y (t1, t2) = exp
{

iμ1t1 + iμ2t2 −
1
2

[
σ2

1t21 + 2ρσ1σ2t1t2 + σ2t
2
2

]
}

.

1.6 Maximum Likelihood and Least Squares

By Fact 4, the conditional distribution of y given X = x is

N(μ2 + ρ
σ2

σ1
(x − μ1), σ2

2(1 − ρ2)).

Thus y is decomposed into two components, a linear trend in x – the systematic
part – and a normal error, with mean zero and constant variance – the random
part. Changing the notation, we can write this as

y = a + bx + ε, ε ∼ N(0, σ2).
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With n values of the predictor variable x, we can similarly write

yi = a + bxi + εi, εi ∼ N(0, σ2).

To complete the specification of the model, we need to specify the dependence
or correlation structure of the errors ε1, . . . , εn. This can be done in various ways
(see Chapter 4 for more on this). Here we restrict attention to the simplest and
most important case, where the errors εi are iid:

yi = a + bxi + εi, εi iid N(0, σ2). (∗)

This is the basic model for simple linear regression.
Since each yi is now normally distributed, we can write down its density.

Since the yi are independent, the joint density of y1, . . . , yn factorises as the
product of the marginal (separate) densities. This joint density, regarded as a
function of the parameters, a, b and σ, is called the likelihood, L (one of many
contributions by the great English statistician R. A. Fisher (1890-1962), later
Sir Ronald Fisher, in 1912). Thus

L =
1

σn(2π)
1
2 n

∏n

i=1
exp{−1

2
(yi − a − bxi)2/σ2}

=
1

σn(2π)
1
2 n

exp{−1
2

∑n

i=1
(yi − a − bxi)2/σ2}.

Fisher suggested choosing as our estimates of the parameters the values that
maximise the likelihood. This is the Method of Maximum Likelihood; the re-
sulting estimators are the maximum likelihood estimators or MLEs. Now max-
imising the likelihood L and maximising its logarithm � := log L are the same,
since the function log is increasing. Since

� := log L = −1
2
n log 2π − n log σ − 1

2

∑n

i=1
(yi − a − bxi)2/σ2,

so far as maximising with respect to a and b are concerned (leaving σ to one
side for the moment), this is the same as minimising the sum of squares SS :=
∑n

i=1(yi − a − bxi)2 – just as in the Method of Least Squares. Summarising:

Theorem 1.8

For the normal model (∗), the Method of Least Squares and the Method
of Maximum Likelihood are equivalent ways of estimating the parameters a

and b.



1.7 Sums of Squares 23

It is interesting to note here that the Method of Least Squares of Legendre
and Gauss belongs to the early nineteenth century, whereas Fisher’s Method of
Maximum Likelihood belongs to the early twentieth century. For background
on the history of statistics in that period, and an explanation of the ‘long pause’
between least squares and maximum likelihood, see Stigler (1986).

There remains the estimation of the parameter σ, equivalently the variance
σ2. Using maximum likelihood as above gives

∂�/∂σ =
−n

σ
+

1
σ3

∑n

i=1
(yi − a − bxi)2 = 0,

or
σ2 =

1
n

∑n

i=1
(yi − a − bxi)2.

At the maximum, a and b have their maximising values â, b̂ as above, and then
the maximising value σ̂ is given by

σ̂2 =
1
n

∑n

1
(yi − â − b̂xi)2 =

1
n

∑n

1
(yi − ŷi)2.

Note that the sum of squares SS above involves unknown parameters, a

and b. Because these are unknown, one cannot calculate this sum of squares
numerically from the data. In the next section, we will meet other sums of
squares, which can be calculated from the data – that is, which are functions
of the data, or statistics. Rather than proliferate notation, we will again denote
the largest of these sums of squares by SS; we will then break this down into
a sum of smaller sums of squares (giving a sum of squares decomposition). In
Chapters 3 and 4, we will meet multidimensional analogues of all this, which
we will handle by matrix algebra. It turns out that all sums of squares will be
expressible as quadratic forms in normal variates (since the parameters, while
unknown, are constant, the distribution theory of sums of squares with and
without unknown parameters is the same).

1.7 Sums of Squares

Recall the sample regression line in the form

y = y + b(x − x), b = sxy/sxx = Sxy/Sxx. (SRL)

We now ask how much of the variation in y is accounted for by knowledge of x

– or, as one says, by regression. The data are yi. The fitted values are ŷi, the
left-hand sides above with x on the right replaced by xi. Write

yi − y = (yi − ŷi) + (ŷi − y),



24 1. Linear Regression

square both sides and add. On the left, we get

SS :=
∑n

i=1
(yi − y)2,

the total sum of squares or sum of squares for short. On the right, we get three
terms:

SSR :=
∑

i
(ŷi − y)2,

which we call the sum of squares for regression,

SSE :=
∑

i
(yi − ŷi)2,

the sum of squares for error (since this sum of squares measures the errors
between the fitted values on the regression line and the data), and a cross term

∑

i
(yi − ŷi)(ŷi − y) = n

1
n

∑

i
(yi − ŷi)(ŷi − y) = n.(y − ŷ)(y − y).

By (SRL), ŷi − y = b(xi − x) with b = Sxy/Sxx = Sxy/S2
x, and

yi − ŷ = (yi − y) − b(xi − x).

So the right above is n times

1
n

∑

i
b(xi − x)[(yi − y) − b(xi − x)] = bSxy − b2S2

x = b
(
Sxy − bS2

x

)
= 0,

as b = Sxy/S2
x. Combining, we have

Theorem 1.9

SS = SSR + SSE.

In terms of the sample correlation coefficient r2, this yields as a corollary

Theorem 1.10

r2 = SSR/SS, 1 − r2 = SSE/SS.

Proof

It suffices to prove the first.

SSR

SS
=

∑
(ŷi − y)2

∑
(yi − y)2

=
∑

b2(xi − x)2
∑

(yi − y)2
=

b2S2
x

S2
y

=
S2

xy

S4
x

.
S2

x

S2
y

=
S2

xy

S2
xS2

y

= r2,

as b = Sxy/S2
x.
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The interpretation is that r2 = SSR/SS is the proportion of variability in y

accounted for by knowledge of x, that is, by regression (and 1− r2 = SSE/SS

is that unaccounted for by knowledge of x, that is, by error). This is just
the sample version of what we encountered in §1.5 on the bivariate normal
distribution, where (see below Fact 6 in §1.5) ρ2 has the interpretation of the
proportion of variability in y accounted for by knowledge of x. Recall that r2

tends to ρ2 in the large-sample limit, by the Law of Large Numbers, so the
population theory of §1.5 is the large-sample limit of the sample theory here.

Example 1.11

We wish to predict y, winning speeds (mph) in a car race, given the year x, by
a linear regression. The data for years one to ten are y=(140.3, 143.1, 147.4,
151.4, 144.3, 151.2, 152.9, 156.9, 155.7, 157.7). The estimates for a and b now
become â = 139.967 and b̂ = 1.841. Assuming normally distributed errors in
our regression model means that we can now calculate confidence intervals for
the parameters and express a level of uncertainty around these estimates. In
this case the formulae for 95% confidence intervals give (135.928, 144.005) for
a and (1.190, 2.491) for b.

Distribution theory. Consider first the case b = 0, when the slope is zero, there
is no linear trend, and the yi are identically distributed, N(a, σ2). Then y and
yi − y are also normally distributed, with zero mean. It is perhaps surprising,
but true, that

∑
(yi − y)2 and y are independent; we prove this in §2.5 below.

The distribution of the quadratic form
∑

(yi−y)2 involves the chi-square distri-
bution; see §2.1 below. In this case, SSR and SSE are independent chi-square
variates, and SS = SSR + SSE is an instance of chi-square decompositions,
which we meet in §3.5.

In the general case with the slope b non-zero, there is a linear trend, and a
sloping regression line is more successful in explaining the data than a flat one.
One quantifies this by using a ratio of sums of squares (ratio of independent
chi-squares) that increases when the slope b is non-zero, so large values are
evidence against zero slope. This statistic is an F-statistic (§2.3: F for Fisher).
Such F-tests may be used to test a large variety of such linear hypotheses
(Chapter 6).

When b is non-zero, the yi − y are normally distributed as before, but with
non-zero mean. Their sum of squares

∑
(yi − y)2 then has a non-central chi-

square distribution. The theory of such distributions is omitted here, but can
be found in, e.g., Kendall and Stuart (1979), Ch. 24.
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1.8 Two regressors

Suppose now that we have two regressor variables, u and v say, for the re-
sponse variable y. Several possible settings have been prefigured in the discus-
sion above:

1. Height.

Galton measured the father’s height u and the mother’s height v in each
case, before averaging to form the mid-parental height x := (u+v)/2. What
happens if we use u and v in place of x?

2. Predicting grain yields.

Here y is the grain yield after the summer harvest. Because the price that
the grain will fetch is determined by the balance of supply and demand, and
demand is fairly inflexible while supply is unpredictable, being determined
largely by the weather, it is of great economic and financial importance
to be able to predict grain yields in advance. The two most important
predictors are the amount of rainfall (in cm, u say) and sunshine (in hours,
v say) during the spring growing season. Given this information at the end
of spring, how can we use it to best predict yield in the summer harvest?
Of course, the actual harvest is still subject to events in the future, most
notably the possibility of torrential rain in the harvest season flattening the
crops. Note that for the sizeable market in grain futures, such predictions
are highly price-sensitive information.

3. House prices.

In the example above, house prices y depended on earnings u and interest
rates v. We would expect to be able to get better predictions using both
these as predictors than using either on its own.

4. Athletics times.

We saw that both age and distance can be used separately; one ought to
be able to do better by using them together.

5. Timber.

The economic value of a tree grown for timber depends on the volume
of usable timber when the tree has been felled and taken to the sawmill.
When choosing which trees to fell, it is important to be able to estimate
this volume without needing to fell the tree. The usual predictor variables
here are girth (in cm, say – measured by running a tape-measure round the
trunk at some standard height – one metre, say – above the ground) and
height (measured by use of a surveyor’s instrument and trigonometry).
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With two regressors u and v and response variable y, given a sample of size
n of points (u1, v1, y1), . . . , (un, vn, yn) we have to fit a least-squares plane –
that is, we have to choose parameters a, b, c to minimise the sum of squares

SS :=
∑n

i=1
(yi − c − aui − bvi)2.

Taking ∂SS/∂c = 0 gives

∑n

i=1
(yi − c − aui − bvi) = 0 : c = y − au − bv.

We rewrite SS as

SS =
∑n

i=1
[(yi − y) − a(ui − u) − b(vi − v)]2.

Then ∂SS/∂a = 0 and ∂SS/∂b = 0 give

∑n

i=1
(ui − u)[(yi − y) − a(ui − u) − b(vi − v)] = 0,

∑n

i=1
(vi − v)[(yi − y) − a(ui − u) − b(vi − v)] = 0.

Multiply out, divide by n to turn the sums into averages, and re-arrange using
our earlier notation of sample variances and sample covariance: the above equa-
tions become

asuu + bsuv = syu,

asuv + bsvv = syv.

These are the normal equations for a and b. The determinant is

suusvv − s2
uv = suusvv(1 − r2

uv)

(since ruv := suv/(susv)). This is non-zero iff ruv �= ±1 – that is, iff the points
(u1, v1), . . . , (un, vn) are not collinear – and this is the condition for the normal
equations to have a unique solution.

The extension to three or more regressors may be handled in just the same
way: with p regressors we obtain p normal equations. The general case is best
handled by the matrix methods of Chapter 3.

Note 1.12

As with the linear regression case, under the assumption of iid N(0, σ2) errors
these formulas for a and b also give the maximum likelihood estimates. Further,
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100(1 − α)% confidence intervals can be returned routinely using standard
software packages, and in this case can be calculated as

c = ĉ ± tn−3(1 − α/2)s

√ ∑
u2

i

∑
v2

i − (
∑

uivi)
2

n
∑

u2
i Svv + n

∑
uivi [2nuv −

∑
uivi] − n2u2

∑
v2

i

,

a = â ± tn−3(1 − α/2)s

√
Svv

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

,

b = b̂ ± tn−3(1 − α/2)s

√
Suu

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

,

where

s =

√
1

n − 3

(
Syy − âSuy − b̂Svy

)
;

see Exercise 3.10.

Note 1.13 (Joint confidence regions)

In the above, we restrict ourselves to confidence intervals for individual param-
eters, as is done in e.g. S-Plus/R�. One can give confidence regions for two
or more parameters together, we refer for detail to Draper and Smith (1998),
Ch. 5.

EXERCISES

1.1. By considering the quadratic

Q(λ) :=
1
n

∑n

i=1
(λ(xi − x) + (yi − y))2,

show that the sample correlation coefficient r satisfies
(i) −1 ≤ r ≤ 1;
(ii) r = ±1 iff there is a linear relationship between xi and yi,

axi + byi = c (i = 1, . . . , n).

1.2. By considering the quadratic

Q(λ) := E[(λ(x − x) + (y − y))2],

show that the population correlation coefficient ρ satisfies
(i) −1≤ρ≤1;
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(ii) ρ = ±1 iff there is a linear relationship between x and y,
ax + by = c with probability 1.

(These results are both instances of the Cauchy–Schwarz inequality
for sums and integrals respectively.)

1.3. The effect of ageing on athletic performance. The data in Table 1.1
gives the first author’s times for the marathon and half-marathon
(in minutes).
(i) Fit the model log(time) = a + b log(age) and give estimates and

Age Half-marathon Age Marathon
46 85.62 46.5 166.87
48 84.90 47.0 173.25
49 87.88 47.5 175.17
50 87.88 49.5 178.97
51 87.57 50.5 176.63
57 90.25 54.5 175.03
59 88.40 56.0 180.32
60 89.45 58.5 183.02
61 96.38 59.5 192.33
62 94.62 60.0 191.73

Table 1.1 Data for Exercise 1.3

95% confidence intervals for a and b.
(ii) Compare your results with the runners’ Rule of Thumb that, for
ageing athletes, every year of age adds roughly half a minute to the
half-marathon time and a full minute to the marathon time.

1.4. Look at the data for Example 1.11 on car speeds. Plot the data along
with the fitted regression line. Fit the model y = a + bx + cx2 and
test for the significance of a quadratic term. Predict the speeds for
x=(-3, 13) and compare with the actual observations of 135.9 and
158.6 respectively. Which model seems to predict best out of sample?
Do your results change much when you add these two observations
to your sample?

1.5. Give the solution to the normal equations for the regression model
with two regressors in §1.8

1.6. Consider the data in Table 1.2 giving the first author’s half-marathon
times:
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Age (x) Time (y) Age (x) Time (y)
42 92.00 51 87.57
43 92.00 57 90.25
44 91.25 59 88.40
46 85.62 60 89.45
48 84.90 61 96.38
49 87.88 62 94.62
50 87.88 63 91.23

Table 1.2 Data for Exercise 1.6

(i) Fit the models y = a + bx and y = a + bx + cx2. Does the extra
quadratic term appear necessary?
(ii) Effect of club membership upon performance. Use the following
proxy v = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) to gauge the effect of club
membership. (v = 1 corresponds to being a member of a club).
Consider the model y = a+ bx+ cv. How does membership of a club
appear to affect athletic performance?

1.7. The following data, y = (9.8, 11.0, 13.2, 15.1, 16.0) give the price in-
dex y in years one to five.
(i) Which of the models y = a + bt, y = Aebt fits the data best?
(ii) Does the quadratic model, y = a + bt + ct2 offer a meaningful
improvement over the simple linear regression model?

1.8. The following data in Table 1.3 give the US population in millions.
Fit a suitable model and interpret your findings.

Year Population Year Population
1790 3.93 1890 62.90
1800 5.31 1900 76.00
1810 7.24 1910 92.00
1820 9.64 1920 105.70
1830 12.90 1930 122.80
1840 17.10 1940 131.70
1850 23.20 1950 151.30
1860 31.40 1960 179.30
1870 39.80 1970 203.20
1880 50.20

Table 1.3 Data for Exercise 1.8.
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1.9. One-dimensional change-of-variable formula. Let X be a continuous
random variable with density fX(x). Let Y = g(X) for some mono-
tonic function g(·).
(i) Show that

fY (x) = fX

(
g−1(x)

)
∣
∣
∣
∣
dg−1(x)

dx

∣
∣
∣
∣ .

(ii) Suppose X∼N(μ, σ2). Show that Y = eX has probability density
function

fY (x) =
1√
2πσ

exp
{

− (logx − μ)2

2σ2

}

.

[Note that this gives the log-normal distribution, important in the
Black–Scholes model of mathematical finance.]

1.10. The following exercise motivates a discussion of Student’s t distri-
bution as a normal variance mixture (see Exercise 1.11). Let U∼χ2

r

be a chi-squared distribution with r degrees of freedom (for which
see §2.1), with density

fU (x) =
x

1
2 r−1e−

1
2 x

2
1
2 rΓ ( r

2 )
.

(i) Show, using Exercise 1.9 or differentiation under the integral sign
that Y = r/U has density

fY (x) =
r

1
2 rx−1− 1

2 re−
1
2 rx−1

2
1
2 rΓ ( r

2 )
.

(ii) Show that if X∼Γ (a, b) with density

fX(x) =
xa−1bae−bx

Γ (a)
,

then Y = X−1 has density

fY (x) =
bax−1−ae−b/x

Γ (a)
.

Deduce the value of
∫ ∞

0

x−1−ae−b/xdx.
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1.11. Student’s t distribution. A Student t distribution t(r) with r degrees
of freedom can be constructed as follows:
1. Generate u from fY (·).
2. Generate x from N(0, u),
where fY (·) is the probability density in Exercise 1.10 (ii). Show that

ft(r)(x) =
Γ

(
r
2 + 1

2

)

√
πrΓ ( r

2 )

(

1 +
x2

r

)− 1
2 (r+1)

.

The Student t distribution often arises in connection with the chi-
square distribution (see Chapter 2). If X∼N(0, 1) and Y ∼χ2

r with
X and Y independent then

X
√

Y/r
∼t(r).



2
The Analysis of Variance (ANOVA)

While the linear regression of Chapter 1 goes back to the nineteenth century,
the Analysis of Variance of this chapter dates from the twentieth century, in
applied work by Fisher motivated by agricultural problems (see §2.6). We begin
this chapter with some necessary preliminaries, on the special distributions of
Statistics needed for small-sample theory: the chi-square distributions χ2(n)
(§2.1), the Fisher F -distributions F (m, n) (§2.3), and the independence of nor-
mal sample means and sample variances (§2.5). We shall generalise linear re-
gression to multiple regression in Chapters 3 and 4 – which use the Analysis
of Variance of this chapter – and unify regression and Analysis of Variance in
Chapter 5 on Analysis of Covariance.

2.1 The Chi-Square Distribution

We now define the chi-square distribution with n degrees of freedom (df), χ2(n).
This is the distribution of

X2
1 + . . . + X2

n,

with the Xi iid N(0, 1).
Recall (§1.5, Fact 9) the definition of the MGF, and also the definition of

the Gamma function,

Γ (t) :=
∫ ∞

0

e−xxt−1dx (t > 0)
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(the integral converges for t > 0). One may check (by integration by parts)
that

Γ (n + 1) = n! (n = 0, 1, 2, . . .),

so the Gamma function provides a continuous extension to the factorial. It is
also needed in Statistics, as it comes into the normalisation constants of the
standard distributions of small-sample theory, as we see below.

Theorem 2.1

The chi-square distribution χ2(n) with n degrees of freedom has
(i) mean n and variance 2n,
(ii) MGF M(t) = 1/(1 − 2t)

1
2 n for t < 1

2 ,
(iii) density

f(x) =
1

2
1
2 nΓ

(
1
2n

) .x
1
2 n−1 exp

(

−1
2
x

)

(x > 0).

Proof

(i) For n = 1, the mean is 1, because a χ2(1) is the square of a standard normal,
and a standard normal has mean 0 and variance 1. The variance is 2, because
the fourth moment of a standard normal X is 3, and

var
(
X2

)
= E

[(
X2

)2
]
−

[
E

(
X2

)]2
= 3 − 1 = 2.

For general n, the mean is n because means add, and the variance is 2n because
variances add over independent summands (Haigh (2002), Th 5.5, Cor 5.6).
(ii) For X standard normal, the MGF of its square X2 is

M(t) :=
∫

etx2
φ(x) dx =

1√
2π

∫ ∞

−∞
etx2

e−
1
2 x2

dx =
1√
2π

∫ ∞

−∞
e−

1
2 (1−2t)x2

dx.

So the integral converges only for t < 1
2 ; putting y :=

√
1 − 2t.x gives

M(t) = 1/
√

1 − 2t

(

t <
1
2

)

for X∼N(0, 1).

Now when X , Y are independent, the MGF of their sum is the product of their
MGFs (see e.g. Haigh (2002), p.103). For etX , etY are independent, and the
mean of an independent product is the product of the means. Combining these,
the MGF of a χ2(n) is given by

M(t) = 1/(1 − 2t)
1
2 n

(

t <
1
2

)

for X∼χ2(n).
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(iii) First, f(.) is a density, as it is non-negative, and integrates to 1:

∫

f(x) dx =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

Γ
(

1
2n

)

∫ ∞

0

u
1
2 n−1 exp(−u) du (u :=

1
2
x)

= 1,

by definition of the Gamma function. Its MGF is

M(t) =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

etxx
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x(1 − 2t)

)

dx.

Substitute u := x(1 − 2t) in the integral. One obtains

M(t) = (1 − 2t)−
1
2 n 1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

u
1
2 n−1e−u du = (1 − 2t)−

1
2 n,

by definition of the Gamma function.

Chi-square Addition Property. If X1, X2 are independent, χ2(n1) and χ2(n2),
X1 + X2 is χ2(n1 + n2).

Proof

X1 = U2
1 + . . . + U2

n1
, X2 = U2

n1+1 + . . . + U2
n1+n2

, with Ui iid N(0, 1).
So X1 + X2 = U2

1 + · · · + U2
n1+n2

, so X1 + X2 is χ2(n1 + n2).

Chi-Square Subtraction Property. If X = X1 + X2, with X1 and X2 indepen-
dent, and X ∼ χ2(n1 + n2), X1 ∼ χ2(n1), then X2 ∼ χ2(n2).

Proof

As X is the independent sum of X1 and X2, its MGF is the product of their
MGFs. But X , X1 have MGFs (1 − 2t)−

1
2 (n1+n2), (1 − 2t)−

1
2 n1 . Dividing, X2

has MGF (1 − 2t)−
1
2 n2 . So X2 ∼ χ2(n2).


